It follows from (3.1) and (3.3) that the adiabatic equation for an isomagnetic step takes the following form in
the pV plane (V is specific volume}:

P2 =PV — Vol (0Vy — Vi) —2muH(Vy — V/MViVe (Ve — Vi), n = (v + D/ — 1), (3.4)

The mass flux through the surface of discontinuity is given by the following formula, as in gasdynamics:

m? = (p; —p)/ (Ve — Va)-

It follows from (3.4) that the adiabatic curve in that case passes through the point p,V, and has the same asymp-
totes as does the Hugoniot adiabatic and lies above the latter for Vy < Vy, but below it for vV, > V4,

The author is debted to V., V. Gogosov for direction in this work.
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CURRENT AND ENERGY AMPLIFICATION IN A PLANAR CUMULATIVE
MAGNETIC GENERATOR WITH FLUX DIFFUSION

E. I, Bichenkov UDC 5384

§1. Magnetic-field compressionin a conducting space (magnetic cumulation) increases the current and the
magnetic-field energy; two cases are of interest here: 1) given an initial current I and a load inductance L,
select an initial circuit inductance Ly such as to give the largest final current I; and 2) given the initial nergy
U, and load L, select Ly such as to obtain the largest energy U at the end,

Generators of the first type are used to produce very strong magnetic fields and may be called field
generators; those of the second type are similarly called energy generators. The two types differ substantially
in initial conditions: the initial current is preset in a field generator, and the energy is Uy ~ Ly, while in an
energy generator the initial energy is preset, and Iy ~ L;'/% A field generator may be characterized via the
current amplification factor

i = IlTy = (LJ/L)LI/Ly, = A, 1.1y

where X = Ly/L represents the circuit change, and ¢ = LI/L,l, is the proportion of the magnetic flux retained
in the generator, An energy generator may be characterized by the energy amplification factor

&= LI/LI} = hg?. {1.2)

§2. Thequantity ¢ is a major characteristic of such a generator, as it is dependent on the design, and
‘particularly on the conductivity o of the material and the field-compression time. Also, the leakage of the flux
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into the conductor is dependent on the initial field distribution at the generator walls, which itself is determined
by the time needed to pump the generator from the current source, A scheme has been suggested {1, 2] for cal-
culating the loss of flux by diffusion in a CM generator, and equations were derived for the flux leakage into the
conductor for magnetic accumulation in narrow cavities. In the case of a generator with current leads of con~
stant width, it was shown that the flux variation corresponds to the following universal self-modeling state at

the end of the compression: )

¢ =1+ 2Va/pyT —t + (Hw)(1 — )P4, (2.1)

which is governed by the single constant ¢, , which itself is dependent on the magnetic Reynolds number y =
41r(m2D/ A o and the initial field distribution in the conductors. Here the time has been referred to the flux
compression time 7 /D, while ¢ is the width of the generator cavity, I, is the initial length, and D is the speed of
the piston that compresses the flux, The conductivity ¢ and speed D are assumed constant, Numerical cal~
culations show that (2.1) describes the flux leakage satisfactorily for 1 —t = 1 /16, while ¢« is only slightly
dependent on the shape of the pumping-current pulse and is determined in the main by the thickness s of the
skin layer set up in the cavity walls, which allows us to choose the initial field distribution By(x) in a form con-
venient for computation and for obtaining explicitformulas for ¢, For instance, for B, = e~X/S we have

- 2us 1y, 7 N 82 - us 1+8/p) ( )_ y(_ S )
(P*(H’S)—WB*(]@)‘T(O”T) @s—1)2  (@2s—1p ~  2s—1 By 4]/ B 2s—1 (T:T)?’(z'z)

where s has been referred to the width a of the slot; B«(z) = e“(1l— ®#z); and & (/Z) is the probability integral.
The function By(z?) has been tabulated {3]. For rapid pumping we have s — 0, and o = @xg= L+8WB 4/ —
4/VTu; while for slow pumping we have s — «, and then gx — % = /4 = Vi + 2(1— u/8)Bx(4 /u), and (2.2)
can be rewritten as

P . 4s? 0, ps? ) ps?
P (}1.,.9) = 1:028 - (2s — 1)-_1 P T (28— 1)3 (B (us ) B*( )) - (-)"‘__1)-(1 B* (Ll"‘)) (2a3)

from which we have the asymptotic formula

Pu(pr ) = (1 5 28)Pygo, 5 € p-173,

1=l | ¢)— s -y
‘P*(M’S):fpg——s*%“‘”—z.i, s>

Formulas (2.2) and (2.3) give an indeterminacy for s = 1/2, which is resolved to give
Pulit 1/2) = (1 — 64/3u0)B,(4/p) — (4/3)(1/Y/AW(L — 8/w).

§3. By considering the flux at time t, we can derive the flux at the load for a generator of simple form
whose length isl = (1 —t)];, i.e., we can determine the mode of operation for the following compression factor:

L=1/(1 —1. (3.1)

To avoid the need for computation, we assume that A = 16, and then substitute (3.1) into (2.1) to get the flux
at the load; then from (1.1) and (1.2) we calculate the characteristics of the generators:

= (1 — 2Va/m -+~ 4/mhg,; (3.2)
= {1 -2V am~ 4m)*rel. (3.3)

Here m = Au is the magnetic Reynolds number for the load, which is the ratio of the time for the flux to diffuse
irom the load to the time for the last current doubling in an ideal generator, Practical interest attaches mainly
to generators with i large and A = 16, som > 1, and (3.2) and (3.3) amount to

i = nup*(}n/k, s)/(m/k); (3.4)
& = mg> (z‘nx_’}v, s)/(mf%). (3.5)
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At present, CM generators are driven in the main from capacitor banks, with the pumping time t; a quar-
ter of the discharge period.

The thickness of the skin layer increases as i, during the pumping; the capacitor bank is specified for an
energy generator, while the circuit inductance is proportional to A, and then t; ~ v, and

s = 8%k, (3.6)

where 0 is the thickness of the skin layer arising on direct discharge of the bank through the load, The same
relation applies also for a field generator if the initial current is maintained by altering the potential difference
across the capacitor bank without altering the capacitance,

We substitute (2.2) into (3.4) and (3.5) and use (3.6) to calculate the current and energy amplification fac-
tors on compressing a magnetic field in a simple generator; Figs. 1 and 2 show the results for sm¥t = 0;
0.05; 0.5; 2; « as curves 1-5, respectively,

The current amplification factor is clearly very much dependent on the initial field distribution, since it
initially increases with A, but falls very slowly after the peak, If the pumping is slow, i reaches the asymptote
i=m/4, The peak i shifts to larger A/m as sml/4 increases, while the value changes from 4,210 *m to 0.25m.
The least value for ) corresponding to peak i for rapid pumping is 0.7m.,

If the capacitor voltage remains unchanged in a field generator, the capacitance must be increased in pro-
portion to X in order to maintain the initial current; then ty ~ A and s =6+vX,1.¢., the thickness of the skin layer
is much larger than that for a fixed capacitor bank, and the current for a given ¢ attains larger values ad
falls even more slowly after the peak, However, i < m/4 in all cases,

Further, € has a clear peak for all 6m1/4, and this lies in the range 0.3136 < 4)/m = 1.1664, while the
height of the peak increases with 6mY* from 8.107% m to 2.22.1072m; this is readily understood in physical
terms. If A is small, the flux loss is also small, but € is also small because ) is small, If A is large, the
working time is long, and the flux loss increases, and hence ¢ falls,

It is fairly simple to obtain m ~ 103, 6m!/# ~ 0.1 in experiments; larger values are difficuit to obtain,
since this requires excessively small loads and very large, low-voltage capacitor banks, Under such conditions,
one expects at most a 12-fold increase in the energy for A = 140 and a 70-fold increase in the current for x =
1300, This shows that magnetic cumulation in a planar generator cannot be expected to pi‘ovide an energy in-
crease by more than an order of magnitude. We get from (3.3) that such a generator has little to recommend
it on energy grounds for m < 30 with slow pumping or with m < 80 for fast pumping, Detailed numerical calcu-
lations show that the maximum & are 1.3 and 1.92 for m of 8 and 24, »espectively, in the case of slow pumping,
these values being obtained for A of 1.6 and 8, respectively,

§4. The equationof [2] for the flux loss by diffusion in magnetic cumulation between conductors of variable
width can be solved analytically when the width is z(y) = e*Y (—1= y < 0) and the length of the load is { = (1/0)l o
in that case, the referred inductance of the generator is L(t) = e~ ¥t while ) = e%, and methods similar to those
described in [1] then give us the equation for the magnetic field at the load:

2 4 - B q'
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which may be solved subject to the initial conditions B(0) = 1, B'(0) = « + (2 /u) £((0); the current gain is then

i = B(1), while the energy amplification factor is € = (I/A)i? = e~ ¥B%(1). We solve (4.1) to get for fast pumping
that

. _I/l+m—1 3 ((V1+m—1)2 )', Vism-+1 ((]/1-;—m—!—1)2 ) ] Vi+m—1 ((Vl—]-m—ﬂz
o= Vitm exP n “r 2¥ 1+ m By m *) 2Vi+tm B m a) &2

and for slow pumping that

Z.0:1/1+m+1

Vi+nm

(Vw—m—a)fa>+vr+‘ﬁ—13*<(vm+m )_1”1‘?7—:—15_ ((V-Tﬁ—i)2

eXp( 2Vitm 2VTtm m “)‘ (4.3)

Here m = ¢y is the magnetic Reynolds number for the load.

It is clear that this altered shape substantially affects the operation. If A is large, the terms containing
B, vanish in (4.2) and (4.3), and the current increases with 2 for any m:

(VTTm—1)?
: :-l/l'}'m—'l; m

i —
o Vi+tm ’

- (T Em—1)?
iD:V1+m+1} 117:1 7>>1
Viem v AR

Further, the energy-increase factors are then

1

m

)2 2(ViFm—1)°%

e o 2AVigm—1)®"
aoz(V_i—ﬂﬂ) A" "oas

and are substantially dependent on the load. If m < 8, € falls as A increases, while if m > 8 the two increase
together, If m = 8, € tends asymptotically to a constant having the value 4 /9 for rapid pumping or 16/9 for slow
pumping, ’

Figure 3 shows results calculated for € for rapid pumping in such a generator for m of 3, 8, and 15
(curves 1-3)., Figure 4 shows similar calculations for slow pumping for the same m. Clearly,i and € increase
considerably with m, and i — ),€ — A for m > 1, as should be the case for a generator with no flux loss.
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Therefore, conductor shaping can substantially reduce the loss of flux by diffusion and considerably im-
prove the performance of a CM generator, There are two reasons for this: first, the shaped conductors allow
one to provide a given A with a shorter generator, which reduces the working time and thus reduces the flux
loss; and secondly,the field in such a generator is inhomogeneous: it is large near the point where the con-
ductors meet and weak in the rest of the generator., This field distribution means that the flux losses in the
wide part and in the load can be neglected for almost all the flux compression time, with only a minor correc-
tion for the small zone near the junction and also for the short period required to compress the field in this
zone, Of course, the specifications for the contact in that case are very much more severe, since even minor
irregularities on the conductors result in trapping the strong field and thus large contact losses,
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DAMAGE PRODUCED IN GLASS BY METEORITE IMPACT

V. M. Titov UDC 523,51

The effects of meteorites on transparent brittle materials are important in long-term operation of optical
systems in space, such as windows, solar-battery coatings, and so on. Since the material is brittle, the dam-
age on impact differs from that for a plastic metal,

Exposure of specimens in space shows [1] that the surface damage is particularly important, since the
probability of encountering a large particle is low. Sometimes, however, interest attaches to the possibility
that the specimen will be entirely destroyed, Studies have been made [2] of the effects of particles of micron size
on glass and quartz for particle masses m of approximately 101%-10"12g traveling at speeds v of 2-14km /sec. Data
areavailable only from isolated tests [3] for larger particles, so it is desirable to compare [2] with a fairly wide
range of evidence for large particles in order to elucidate the scope for scale simulation and also to refine
our picture of the process.

The present experiments were performed under laboratory conditions by means of explosions [4]; we
used spherical steel particles accelerated to v = 5-~12 km/sec and having diameters d = 0.7-2.3 mm (m ~
1073-5°10"2 g). The specimens were glass disks (optical crown glass) with polished surfaces; a specimen
was attached to a metal holder by a flat clamp at the edge acting via a damping ring; the side surface remained
free, while the diameter was 115-255 mm, having a thickness 6 of 8-20 mm, For comparison, several tests
were performed with quartz specimens. The system prevented the explosion products from affecting the speci-
men; it was not necessary to ensure that the particles struck the center of the disk, A few experiments were
done with particles in the range d = 0.1~0.3 mm (m ~3°107% 1074 g), which were accelerated in a vacuum
chamber to 5-13.5 km/sec, the final size being determined within % 10%; In additmn, measurements were
made with glass particles,

Figure 1 shows a photograph of a specimen of diameter 115 mm and 6 = 15 mm after the experiment
(d= 0,75 mm and v =10 km/sec for the particle). A radial ringed stricture in the cracks is clear, and this
is the same for any speed of impact, The diameter of this zone is D »d, and is close to the sizes observed
on impact on rocks [5, 6], but in the case of glass the material is ejected only from a central part of size Dy
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